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Abstract

Steganography is the study of methods of concealing data in the
noise of another data set. Steganalysis is the field of discovering hid-
den data and disrupting covert channels. We introduce a two-player,
zero-sum, matrix game for the purpose of modeling the contest be-
tween a data-hider and a data-attacker. We then solve the game for
equilibria, demonstrating that the form of the solution depends on
whether the permitted distortion is less than or greater than d., the
critical distortion. This critical point is a simple function of several
parameters which define the game. We then solve two example cases
to demonstrate the ideas presented in the general solution. The value
of the game is the amount of information that may be reliably stored
in the data set.

Keywords: Steganalysis, Cryptanalysis, Equilibria, Shannon En-
tropy, Binary Symmetric Channel, Active Warden Attack.

1 Introduction

Recently techniques in steganography have received a great deal of attention
[1], [6], mostly from members of the signal processing and cryptological com-
munities. Steganography concerns techniques for concealing data in the noise
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of other data. Primary applications include digital watermarking for copy-
right protection of digital data and covert communications. Many methods
for hiding data have been proposed [3], [2], [7] but to this point there have
been no quantitative methods developed for assessing the security of any of
these methods.

Steganography is related to, though distinct from, cryptography. The goal
of a secure cryptographic method is to prevent an interceptor from gaining
any information about the plaintext from the intercepted ciphertext. The
goal of a secure steganographic method is to prevent an observant interme-
diary from even obtaining knowledge of the mere presence of the secret data.
In most applications the embedded message will be encrypted before hiding.
Otherwise the natural language structure in the message will be statistically
detectable. Also, we are primarily interested in the case where digital data
is hidden in a digital data set. Therefore we assume that the hidden message
is a pseudorandom bit sequence.

In cryptology, the complementary endeavor to finding secure encryption
methods is called cryptanalysis and is concerned with discovering techniques
for breaking cryptographic schemes. To this point in time the analogous field
of steganalysis remains almost completely mathematically undeveloped. In
order to begin to remedy this it is important to utilize the proper notion of
breaking a steganographic system. The purpose of steganography is to hide
data and therefore the primary counterobjectives are to discover the pres-
ence of hidden data (perhaps in a probabilistic setting) and/or to reduce the
channel capacity of the covert channels. The first type of attack is sometimes
called a passive warden attack and the second type an active warden attack.
Notice that we do not demand that the hidden message is recovered for a
steganalytic attack to be successful, though the question of to what degree
this may be accomplished is certainly of interest. The question of then de-
crypting the recovered message is a classical cryptanalytic question and lies
outside the interests of steganalysis proper.

Cryptology has emerged over the years from a collection of ad hoc tech-
niques into a sophisticated discipline utilizing ideas from many areas of math-
ematics and contributing to the development of mathematics. We believe
that steganology holds a similar promise of deep connections with and po-
tential contributions to various branches of mathematics and applied math-
ematics, especially pattern recognition. With the hope of leveraging some
of the success of cryptanalysis, in this paper we borrow several operating



assumptions on our way to a mathematical assessment of the security of
steganographic algorithms. In particular, we assume that all algorithms are
public knowledge and that the security of the system resides in a secret key.
This assumption, basic to cryptology, will manifest in the formulation of the
matrix games that we use to model covert channels.

As we mentioned, there are two different types of attacks on stegano-
graphic systems. The first of the two attacks is detecting the presence of the
hidden information and the second is interruption of communication by over-
writing the hidden information. In this paper we introduce a game-theoretic
model of the second type of attack. The data Hider chooses a distribution
of locations to hide data in the data set subject to a limit on the amount of
distortion he may introduce into the data set. This distortion parameter is
thus an measure of the noise in the data set. The Attacker also chooses a dis-
tribution of locations to hide pseudorandom noise in an attempt to overwrite
the hidden data. In this paper the Attacker is subject to the same distortion
limit as the Hider. Associated to any pair of strategies there is an associated
payoff which measures the amount of data that is communicated. The Hider
desires a strategy which maximizes this payoff whereas the Attacker desires
to minimize this payoff. We therefore have a two-player, zero-sum game and
we then proceed to solve this game for optimal strategies and payoffs.

This paper is organized as follows. In the next section we review the
basic concepts of game theory that we require for our analysis. In Section 3
we define the particular game that models the steganographic scenario. In
Section 4 we solve the game for optimal strategies and associated payoffs. In
Section 5 we give two examples of the solutions deduced in Section 4 and we
conclude in Section 6 with a brief discussion of future research directions.

2 Review of Matrix Games

We now briefly summarize the main ideas and results we will need from
the classical theory of games. For further explanation, consult the excellent
reference [5]. A real-valued, two-player, zero-sum game consists of two sets
of pure strategies S*, S? and two payoff functions P! : S x §? - R, P?:
St x 8% — R such that P'(s,t) = —P?(s,t) where s € S! and t € S?. We
will refer to player 1’s payoff simply as the payoff function and denote it by
P with the understanding that the game under consideration is zero-sum.



Without loss of generality assume that Player 1 is trying to maximize the
payoff and Player 2 is trying to minimize the payoff. In all of the games
studied here the sets of pure strategies will be finite. A mized strategy is
a probability distribution over the set of pure strategies. A pure strategy
is therefore a mixed strategy with a point mass as the distribution. When
the pure strategy sets are finite a mixed strategy may be written as a vector
x = (1, ....x;) where Prob(S = s;) = ;. The payoff P’ for a pair of mixed
strategies extends the payoff function P and is defined to be the expected
payoft:

Px,y) = Y aiy;P(si 1), (1)

0,

Since P’ = P for pure strategies we will simply write P for both functions.
An equilibrium for a game G is a pair of mixed strategies, x* for Player 1
and y* for Player 2, such that for all mixed strategies x,y we have

P(x,y") < P(x",y") < P(x",y). (2)

Equilibria strategies are the only correct strategies to play because they have
the property that neither player may benefit by deviating from an equilibrium
strategy. Equilibria strategies therefore represent the solution to the game-
theoretic situation. The fundamental theorem of game theory (originally
proved by Von Neumann and Morgenstern, [8]) states that every finite, zero-
sum game has at least one equilibrium in mixed strategies and that the
payoffs at each equilibria are the same. This number is called the value of
the game.

3 A Steganological Game

Consider the following scenario. An individual wishes to covertly communi-
cate by hiding messages in the noise of some data files. Suppose all data files
sent by this individual, say Player 1, pass through some gateway, perhaps a
computer server, which is under the control of Player 2. Player 2 wants to
automatically introduce noise into all data files passing through the gateway
in order to disrupt any such covert communication. Player 2 does not ex-
amine the files individually to try to find hidden information. Rather, the
disruption is completely automatic.



We now introduce a game to model this steganographic scenario and in
the next section we solve for the optimal mixed strategies. The scenario
is as follows and utilizes the assumptions discussed above. The data is a
pseudorandom sequence of bits and is to be hidden in an N-pixel, 2'-level
greyscale image. Both players will modify the values of bits throughout the
image under the constraint that the total amount of distortion must remain
less than some known constant, say d. The game could easily be modified to
permit different levels of distortion for the Hider and Attacker. We use the
most simple model of distortion possible in that changing the value of a least
significant bit is 1 unit of distortion, modifying a next-to-least significant bit
is 2 units of distortion, etc., until finally modifying a most significant bit
is 27! units of distortion. We emphasize that by using different distortion
measures, more sophisticated models of the effects of modifying an image
may be accommodated in this game-theoretic framework. See the section on
further work for a discussion of variations on this measure.

Player 1 is the data Hider and seeks to maximize the amount of hidden
data whereas Player 2 is the Attacker and seeks to minimize the amount of
hidden data communicated by introducing noise. A pure strategy for Player
1 is an [-tuple of nonnegative real numbers x = (z¢, 1, ..., z;—1) such that

-1
Y oz2 < d. (3)
=0

Given a strategy x, x; is the number of bits that the Hider will store in

the set of i* lowest order bits in the image. Note that z; is allowed to be

a noninteger, whereas in actual fact one must store an integer number of

bits. We will see that in general we require nonintegers in order to obtain

equilibria but that utilizing integer valued vectors in practical situations is
an acceptable approximation. The locations of the hidden bits within a set
are chosen pseudorandomly and are therefore uniformly distributed over all

N bits in position 7. Because half of the original bits will, on average, agree

with the bits to be hidden, hiding z bits in the low order bits will on average

result in zy/2 units of distortion. This observation gives rise to the distortion
inequality. Similarly, a pure strategy for Player 2 is an [-tuple of nonnegative
real numbers (yo, y1, ..., ¥;—1) such that

-1

> y2 < d. (4)

Jj=0



The distortion here is different since Player 2 will flip all y, of the low order
bits. Again the locations are chosen pseudorandomly and are uniformly
distributed throughout all N possible choices. Conceptually what we now
have are [ independent binary symmetric channels [4] where the probability
for a hidden bit to be flipped in channel C; is y;/N. Notice that both pure
strategy sets are finite and therefore mixed strategies may be written as
vectors, X,Y.

Let us now consider the construction of the payoff function for this game.
Suppose Z is a discrete random variable that takes the value z; with proba-
bility p;, i.e. P(Z = z;) = p;. The Shannon entropy [4] of Z is given by:

H(Z) = Y plog(-). (5)

If the log is taken base 2 than H has units of bits. If Z takes on only two
possible values with probabilities p; and 1—p; then we abbreviate the entropy
by writing

H(p) = —pilog(p1) — (1 —p1)log(1 — p1). (6)

The channel capacity for a binary symmetric channel with bit error prob-
ability p is 1 — H(p) [4]. The channel capacity is the asymptotic average
number of bits communicated through the channel per bit sent through the
channel and this limit is approached by using error-correcting codes. For
each channel C;, 0 < ¢ < [—1, the Hider sends z; bits and the probability for
a bit error due to the noise introduction by the Attacker is y;/N. Therefore
the payoff function for the game is given by:

P(x,y) = L a1~ H(F) (7)

This represents the total number of bits that are communicated on average
utilizing error correcting codes to compensate for the distortion introduced
by the Attacker.

4 Equilibria for the Game

We now wish to solve the above game for equilibria. Recall that these are
strategies such that assuming the other Player is playing his optimal strategy,
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the given strategy is optimal, i.e. no improvement is possible by deviating.
Since a pure strategy is a tuple, x = (zo, ..., 2;_1), we will write mixed strate-
gies, i.e. probability distributions over the set of pure strategies, as vectors
with capital Latin letters, X, and P(X = x) = X(x). It turns out that
this game has an equilibrium in pure strategies. Therefore in the following
derivation we proceed by assuming the equilibrium we seek consists of pure
strategies and our subsequent calculations validate this assumption.
To solve for an equilibrium, recall the payoff function:

Plx,y) = Ll H(F) (8)
Let .
M, =1-H(%) (9)

be the channel capacity for the i"® channel. Using the fact that neither player
desires to deviate from an equilibrium strategy let us solve for an optimal
strategy for the Attacker, y = (yo, v1, ..., ¥i—1)- Fix all components of x except
for z; and z;, where 0 < j < k <[—1 and consider distributing the remaining
distortion

d]’k =d-— Z 2i*1:v,- (10)

i#j,k

between these two components. We may now consider the partial payoff func-
tion Pj, which is the portion of the payoff function, Equation 8, concerning
only the two channels C; and Cj. Consider the following equation for the
partial payoff function as a function of z;:
dip — 27

-1
x.
Sk = T pg, (1)

ij(l'j) = ZCij + .Z'kMk = IL'ij + 2k—

In order to find an equilibrium we must insure that the Hider does not profit
from readjusting z; and z;, for a fixed y. Therefore we have

AP,
dﬂ?j

(z%) = M; — 27 *M, = 0 (12)

J

for an equilibrium z} and thus

M; =277k (13)
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If there is enough total available distortion, and this point will become more
clear below, then this equation must hold for all 0 < j < k£ <[ —1 and so
for any equilibrium strategy y we have

k=31 — g%y =1 — g%
2°77(1 H(N))—l H(N). (14)
In particular if £ = j + 1 then we have 2M; = M;,,. For fixed d and N
Equations 4 and 14 determine the equilibrium strategy y* and this can be
solved numerically.

We now sketch the form of these solutions. Notice that in order to satisfy
2My = My, for all 0 < k£ < [ — 2 requires a critical amount of allowable
distortion d.(I, N). For suppose that M; ; = 1, i.e. the Attacker introduces
no noise in channel Cj_;, the most expensive channel in which to introduce
noise. Then the above channel capacity constraints reduce to M;_o = 1/2,
M,_35 =1/4,...., and in general

M; = 2-(=1=9), (15)

Define a pseudoinverse to the binary symmetric channel capacity function
Cap(p) = 1 — H(p) as Cap~' (M) = unique p such that Cap(p) = M and
0<p<1/2. Then Cap~':1[0,1] — [0,1/2] and we have

-1
d.(I,N) =Y 2'NCap (2 ¢179). (16)

=0

This is the minimal amount of distortion necessary in order for the Attacker
to simultaneously satisfy Equation 14 for each i. If d > d.(I, N) then the
Attacker’s strategy is to distribute d among all channels subject to these
constraints. As mentioned previously, these constraints determine the noise
allocation subject to the distortion limitation. Notice also that

-1

dtotar = D 2'N/2 (17)

1=0

is the amount of distortion necessary to reduce all channels to zero capacity.
This is equivalent to flipping each bit of each pixel with probability 1/2,
i.e. randomizing the image. Of course in a practical situation such extreme
distortion would be prohibited.



Now what is the proper strategy if d < d.? Since it costs twice as much for
the Hider to place data in C;;; as it does in C;, there is an implicit reduction
in the channel capacity of the higher order channels. Define a quantity called
the effective channel capacity

M} =27"M;. (18)

which is the reciprocal of the number of units of distortion required on average
to communicate one logical bit of information in channel C;. Notice that if
y; = 0 then M] = 27". Also note that Equation 14 is equivalent to

M, = M| (19)

for all 4, j. If d < d. then the Attacker’s optimal strategy consists of equalizing
as many of the lowest order effective channel capacities as allowed by the
distortion limit. In other words, the Attacker first introduces noise into
Co, reducing M{ until reaching the point M) = M] = 1. If he has not
reached the distortion limit then he continues to introduce noise into Cy and
now also C}, maintaining the relation Mj = M until he reaches the point
M{ = M{ = M} = } and so on until the limit d is reached.

Let us now solve for the Hider’s optimal strategy. For a fixed x consider
the partial payoff functions as functions of y;:

djr—2y;
Y ik —2y;
Payy) = 251 = H(L)) + (1 — H(—Z—)) (20)
for 0 < j <k <Il—1where
djk =d— Z 2’yz (21)
i#j,k

is again a constant of remaining distortion. In order for y* to be an equilib-
rium strategy it is necessary the Attacker does not profit from readjusting
and therefore we have
205 (45) = 0 (22
dyj J ’

Taking the derivative and carrying through the calculation yields:

i—k oo Pk
2 ey (23)
Tk log

=
Pj
—m*

1 D}



where p; = y;/N. For fixed N, d and from y* derived above we can also
solve this numerically. This process yields pure strategies x* and y* with
nonnegative, possibly noninteger coordinates. The total number of logical
bits communicated is given by

Pecy) = Lo - HO). (24

The fact that the components may not be integers requires comment.
Recall that a pure strategy is an [-tuple of nonnegative real numbers, repre-
senting the number of bits to be stored in a particular channel. However a
noninteger coordinate in a tuple would evidently have no practical interpreta-
tion. For example, for the strategy (5,10.5, ..., 7) we have no way of actually
storing 10.5 bits in the N next-to-least significant bits or 7 bits in the N
most significant bits. In practice this issue is insignificant as the channel
capacities are continuous functions of the strategy components. Therefore
neither player can profit significantly from the other player’s need to approx-
imate a noninteger strategy with integer components. Asymptotically as N
goes to infinity the difference in the payoffs resulting from using the exact
equilibrium and an integer approximation goes to zero.

5 Two Numerical Examples

Let us consider two concrete examples of the preceding game. Numerical
solutions to all sets of nonlinear equations were obtained by the use of simple
Mathematica programs. In the first example we will have d < d. and in the
second example we have d > d.. Consider an 8-bit, 256 level greyscale
image with 10° pixels. For the first example suppose we set the distortion to
be equivalent to freely replacing the two least significant bits in each pixel.
Then d = 3 x 10°. Solving Equation 16 yields d. (8, 10°) ~ 2.4 x 107. Solving
Equations 14 and 4 numerically yields the following solutions for the optimal
Attacker strategy and is presented in Table 1. Solving Equations 23 and 4
numerically yields the following solutions for the optimal Hider strategy and
is presented in Table 2. These solutions and Equation 24 give

P(x*,y") = 346264. (25)
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Table 1: Optimal Strategy for Attacker (d =3 x 105, N = 10°)
Channel | 0 1 2 3 4 5 6 7
Yi 359526 | 302710 | 224980 | 123138 | 9376 | 0 0 0
i .359 .303 225 123 .01 0 0 0
M; 0.058 0.115 231 .462 923 |1 1 1
M] .058 .058 .058 .058 058 [27° =.031]27% 277

Table 2: Optimal Strategy for Hider (d = 3 x 10%, N = 10)

Channel

0

1

2

3

4

5

67

X

97114

134406

181347

228526

192530

0

0]0

For the second example let d = 5x107. This level of distortion corresponds

to treating between 5 and 6 of the lowest bits in each byte as replaceable.
Solving Equations 14 and 4 numerically yields the following solutions for the
optimal Attacker strategy and is presented in Table 3. Solving Equations 23
and 4 numerically yields the solutions for the optimal Hider strategy and is
presented in Table 4. These solutions and Equation 24 give
P(x*,y") = 381120. (26)

We now make a final interesting observation. Consider P(z*, y*), the
total amount of information communicated as a function of d. If d = 0 then
clearly P = 0 because the Hider cannot alter any bits and if d = d;,4; then
P = 0 because the Attacker can randomize the data set. Numerical analysis

suggests that P is concave, achieves a maximum at d,,.; ~ 37N = 3.7 x 107
and P(dpmaz) ~ 405N = 405000.

Table 3: Optimal Strategy for Attacker (d =5 x 107, N = 105)

Channel | 0 1 2 3 4 5 6 7

Ys 463672 | 448647 | 427440 | 397568 | 355659 | 297361 | 217774 | 114101
D .463 .449 427 .398 .356 297 218 114
M, .004 .008 .015 .030 .061 122 .244 488
M .004 .004 .004 .004 .004 .004 .004 .004
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Table 4: Optimal Strategy for Hider (d =5 x 107,N = 10)

Channel | 0 1 2 3 4 5 6 7

T 52624 | 74324 | 104830 | 147456 | 206254 | 285075 | 383418 | 478426

6 Further Work

One may imagine many variations on the game formulation studied here.
For a more general formulation of the problem see [6]. The game presented
in the present work is a simultaneous move game and models the situation
whereby the Attacker does not have the privilege of witnessing the Hider’s
move before deciding on a strategy. In a practical situation this may occur
if, for example, the Attacker is in control of a server through which a large
number of files with potential hidden data pass. The Attacker may set up an
automated system to intentionally introduce noise into all data files to disrupt
the covert channels. Another scenario occurs if the Attacker examines files
individually and then introduces noise based on this analysis. Presumably
this would decrease the channel capacity of the covert channels. This latter
scenario would be modeled by a game in which the Attacker moves after the
hider.

Another area which needs further consideration is the distortion measure.
In fact, the actual distortion introduced by changing bits is a difficult prob-
lem, probably requiring consideration of the details of human vision. Large
areas of uniform color are especially sensitive to even small local changes.
Therefore our analysis is probably more relevant to images without these
large uniformities. Quantitative analysis of these problems will be an impor-
tant advance in steganalysis.
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